
hMATHEMATICS OF COMPUTATION 
VOLUME 44, NUMBER 169 
JANUARY 1985, PAGES 167-175 

Partial Fraction Evaluation and Incomplete 
Decomposition of a Rational Function Whose 

Denominator Contains a Repeated Polynomial Factor 

By J. F. Mahoney 

Dedicated to Peter Henrici 

Abstract. Attention is directed to those proper rational functions whose denominators may be 
expressed as the product of an Nth degree polynomial raised to the Kth power and another 
polynomial of degree M. A method is presented for decomposing such a rational function into 
the sum of the K partial fraction terms which proceed from the repeated polynomial plus a 
proper rational function which completes the equality. Use is made of an extended version of 
Homer's scheme. Two numerical examples and an operations count are presented. The 
method is free of complex arithmetic provided that all of the coefficients of the entering 
polynomials are real. 

Introduction. Consider the proper rational function 

(1) F(s) = -KB (s) 
QK(S )A(s)' 

where Q(s) is a polynomial of degree N (N > 1), A(s) is a polynomial of degree M 
which shares none of its zeros with Q(s); B(s) is a polynomial of degree m 
(m < NK + M); and K is an integer greater than zero. An efficient way of finding 
E(s) and the CJ(s) in the expression 

K C,(s) F (s) 
(2) F(s) =E + 

is now presented, where E(s) is a polynomial of degree less than M, and the CJ(s) 
are polynomials of degrees less than N. Henrici discusses many important aspects of 
the problem. When N = 1, one may use his Method B [1, p. 555] to solve for the 
C (s), which in this case are constants. His Method C [1, p. 556], [2], may be used in 
the case where K = 1. Actually, this method may be used when K > 1 by writing 
QK(S) as Q(s), which has the effect of redacing the problem to the K = 1 case. For 
this problem one may find C1(s) which, in Lurn, by repeated use of long division, 
may be written as CI(s) + C2(s)Q(s) + _K* S -F C(s)QK(s). Subsequent division 
by QK(S) gives the summation portion of (2). 
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The present work enlarges the foregoing to cover the cases where both K and N 
are greater than or equal to unity. When N = 2, and K > 1, we have the commonly 
occurring partial fractions problem associated with a repeated quadratic factor in the 
denominator of F(s). There appears to be little demand for handling the case of 
N > 2 and K > 1, but this might be because previously no good methodology 
existed. 

An appealing aspect of the subject method is that the algebra encountered is 
entirely real, given that the coefficients of A(s), B(s), and Q(s) are also real. 

Expansion of an Arbitrary Polynomial in Powers of Q(s). Central to the develop- 
ment is the ability to rewrite the polynomials A(s) and B(s) as power series in Q(s) 
where the coefficients of the power series are themselves polynomials whose degrees 
are all less than N. 

Let Q(s) be written monically as 
N 

(3) Q(S) = N- qis-1, 
i=l 

and consider polynomials of the form 
M-iN 

(4) Ai(s) = E aijsj, i = 0,1, ... .. ,-1, 
j=O 

where A(s) is denoted by AO(s). Owing to the division process Ai(s)/Q(s) one may 
write 

(5) Ai(s) = ai+?(s) +Ai+1(s)Q(s), i = O,j,...,u - 1, 

where Au(s) = 0, and hence au(s) = AU-1(s). The ai+(s) are the "remainder" 
polynomials of degrees less than N; the Ai+ I(s) are the "quotient" polynomials; and 
u is the integer given by 

(6) M+ 1 M+N 
N N 

Combination of the u renditions of (5) gives 
u 

(7) A(s) = ai(s)Q '(s). 
i=l 

The a0i(s) may be written as 
N 

(8) ati(s) = E aijs-', i - 1,2,... ,u. 
j=1 

The ai(s) which appear in (7) may be found by performing the appropriate long 
divisions. When Q(s) is linear (N = 1), the ai(s) are numbers and may be found by 
Homer's scheme. When Q(s) is not linear (N > 1), there is a straightforward 
generalization of Horner's scheme which may be used. 

Figure 1 serves to illustrate one step of the process of finding ai+1(s) and Ai+1(s) 
when Ai(s) is given. The aim is to be able to write Ai(s) according to (5). The 
coefficients of Ai(s) are placed at the top of the tableau. The next N rows are for 
"bookkeeping." The last row shown is obtained by addition of the N + 1 rows 
above, and is segregated into two portions: the left-hand portion contains the 
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coefficients of Ai,1(s), while the right-hand portion contains the coefficients of 
a1+1(s). Multiplication of the bracket which contains the coefficients of Ai+1(s) by 

qk, 1 < k < N, followed by a shift to the right of N - k + 1 places results in the 
formation of the k th bookkeeping row. 

[ai6 ai5 ai4 ai3 ai2 a1l ai0] 

qX 0 0 0 q1ai+1,3 qla1+1,2 qlai+1,1 qlai+1,0 

Y2] 
0 0 q2ai+1,3 q2ai+1,2 q2a1+l,, q2ai+l,0 0 

X~3j 0 q3ai+13 q3ai+1,2 q3ai+l,, q3ai+1,0 0 0 

[ ai+ 1,3 ai+1,2 ai+ 1,1 ai+1,0] I ai+ 1,3 ai+ 1,2 ai+ 1,1] 

FIGURE 1 

A portion of the extended version of Horner 's scheme 
for the case of M- iN = 6, and N = 3. 

The entire process starts with i = 0, so that the coefficients of A(s) form the top 
row of the tableau. The first step, with i = 0, yields the coefficients of al(s) and 

Al(s). Through successive incrementation of i, one gains the coefficients of 
a2(S),. . . aj(s), where, in particular, au(s) = Au-l(S) 

By means of the decomposition method just outlined, one may also write 
v 

(9) B(s) = E fi(s)Qil(s), 
i=l 

where the fi(s) are polynomials of degrees less than N, and v is the integer given by 

(10) N + v < N 

Since v < u + K we are also led to 

u+K 

(11) B(s) = E k(S )Qk(S)' 

k=1 

where any fk(S) for which k > v is taken to be zero. Likewise, 
u 

(12) E(s) = E ck(S)Q (S), 
k=1 

where the Ck(S) are polynomials whose degrees are less than N. 

Development of the Algorithm. Combination of (1), (2), and (7) yields 

(13) B(s) = [ ai(s)Q'1(s)][ E Cj(s)Qj 1(s) + E(s)Q K(5) 

By the decomposition process outlined, one may write 

(14) ai(s)C1(s) = Xi1(s) + Yii(s)Q(s), 1 < i < u, 1 s j < K, 

where the Xij(s) are polynomials whose degrees may be as great as N - 1, while the 

Y1j(s) are polynomials whose degrees are N - 2 at most. Both Xlj(s) and Yj(s) are 
defined to be zero if either of their indices breach the bounds stated in (14). 
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Insertion of (11), (12), and (14) into (13) gives, after rearrangement, 
u+K 

Pk (S)Qk(S) (s) 

k =l1j=l 

provided ck-K(S) is taken to be zero whenever k - K is not positive. Since (15) is an 

identity, the leading summation signs may be dropped yielding 
k 

(16) ck -K(s) + E (Xk-j+l,j(S) + Yk-j,j(S)) = 1k(S), k = 1,2,... ,u + K. 
J=1 

This equation is also valid when the polynomials are replaced by the corresponding 
N component column vectors whose entries are the coefficients of the respective 
polynomials. Define 

p i I ,il I Pi ] T .. = [N]T'il, I-i2, -* N " ] 

to be the vectors which correspond to f,(s) and -,(s), respectively. Here, for 

example, 8ij, j = 1, 2,. . ., N, is the coefficient of si-1 in AI (s). Similarly, the vectors 
which replace X1J(s) and Yj(s) are, respectively, 

xlj 
= 

[XijD, xij2,. * . ,XijN] T Yij [1 =1ij Yij2'* * * 'Y.JN]j 

Substitution into (16) gives 
k 

(17) Ek-K + E (Xk-j+l,j + Yk-j,j) 
= Pk, k = 1,2,..., u + K. 

j=1 

We need to express xij and yi, in terms of the unknown vectors cj whose elements 

are the coefficients of CJ (S), where 
N 

CJ(S) = cjls', Cj = [C1j, CJ2,- Cj 
,CN]T. 

i=l 

Comparison of the coefficients of s?, si,... ,sN-1 of (14) leads to the relation 

(18) Sic1 = x -Vyjj, 
while comparison of the coefficients of sN, SN+ ,... ,s 

2N- gives 
(19) Uc1= Wy1i, 

where 

[a1 0 . . 0 [q1 0 

a12 12 

aN a2 a1 
qN 

q2 q 

a11 ? * * * 1*1 qN * * O 

[I~N alN 
i 

J0 

| a a -qN qN I 

U,=\'~i i,25.\'8 
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Since W'- surely exists, (18) and (19) may be written as 

(20) YIJ = W-1Ui c 

and 

(21) XIJ = [S, + VW-1u1]CJ. 

Insertion of (20) and (21) into (17) gives 
k 

(22) ?k-K + Z [Sk-J +?1 + VW'Uk-j+ 1 + W'Uk_J]CJ = Pk, 
J=1 

k = 1,2,...,u + K. 

Define 

(23) T, = S1 + VW-'U, + W-Ui1,- i = 1,2,... ,u + 1, 

where, in particular, 

T1 = S1 + VW-lUl, TU+1 = W -lUu. 

We may now write (22) as 
k 

(24) kK + E Tk-+1CJ = Pk, k = 1,2,... ,u + K. 
J=1 

The first K of these equations may be rendered as 

Ti 0 0 

'2 [~~~~~~Cii 0 
(25):2= 

0 [cJ 

LTK T2 T 

from which the cJ may be found. The remaining u equations of (24) become 

TK?1 TK?l 

(26) - _ TK il 
0 

L I _K+u 0 T 

from which the e, may be found. The matrix portion of (26) is written for the case 
that u > K. If u < K this matrix should be replaced by 

K-u 

K 0 TU+1 T2 

o . . . . . .. . . o U+1- 
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Evaluation of the Ti. W is easy to invert. It may be shown that 

1 rN * * r2 

(27) W1=0- < 

where 
N-1 

(28) r1 = qi + E qj+lrN+iij = N, N - 1,.. . ,2. 
j=l 

By noting that 

(29) W - lUi = UW- 1 

one may write (23) as 

(30) Ti = Si + (Vui + Ui-l)W- 

The first three Ti are now presented: 
N= 1: 

(31) Ti= ail, 

N= 2: 

(32) [~~~~~~ai2 (ail + q2ai2) J 

N= 3: 

[ail (ai-1,3 + qlai3) (ai-1,2 + q3ai-1,3) + ql(ai2 + q3a(i3) 

(33) Ti = ai2 (ail + q2ai3) (ai-1,3 + qlai3) + q2(ai2 + q3ai3) . 

L (i3 (ai2 + q3ai3) (ail + q2ai3) + q3(ai2 + q3ai3) J 
By inspection of (31), (32), and (33), and through other considerations, a scheme 

for computing Ti which does not directly involve (30) may be obtained. 
Let tijk (j, k = 1,2,... ,N) be the element in the jth row and kth column of Ti. 

The first column of Ti is given by 

(34) tij = ajj, j = 1,2,.. .,N. 

For the ensuing columns (k = 2, 3, . . , N) the first element is given by 

(35) tilk = 
ti-1,N,k-1 + qltiN,k-1 

while the remaining elements are obtained from 

(36) tijk ti,j-1,k-1 + qjtiN k-1 j = 2,3,... ,N. 

Summary. Identify the polynomials A(s), B(s), and Q(s), as well as the numbers 
K, N and u. Take the coefficients of A(s) as the initial dividend, the numbers ql, 

q29... , qN as divisors, and use the extended version of Horner's scheme to find the 
coefficients of al(s), a2(5),. .., au(s). Similarly, with the coefficients of B(s) replac- 
ing those of A(s) in Horner's scheme, the coefficients of 131(s), I2() . K+u() 

may be found. By using (30) or from (34), (35), and (36), one may compute T1, 
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T2 . T. , TU1. The vectors C1, C2,... , CK (and hence, the polynomials Cl(s), 
C2(s),. . ,CK(s)) may be gained from (25), while the vectors ?1, E2,... 9u (and 
hence, the polynomials E1(s), E2(s),... 9,Eu(S)) come from (26). Finally, E(s) is 
computed from (12). All the unknown quantities of (2) have been found. 

Condition of T1. So far it has been tacitly assumed that T1 is nonsingular. If this is 
the case, (25) has a unqiue solution. Otherwise, (25) would either have no solution, 
or would have multiple solutions. We seek the conditions necessary to establish 
whether T1 is singular or not. The exposition is hampered by the fact that T, 
depends upon N. 

Let zj,j = 1, 2,. . .,N, be the zeros of Q(.). Assume that a,1(zj) is an eigenvalue of 
T1. If the assumption is correct then the rows of T1 - al(zj)I must be linearly 
dependent. In every case tested (N = 1, 2, 3, and 4), it was found that premultiplica- 
tion of T1- al(zj)I by [1, zj, zJ,... ,zJVl] resulted in the zero vector, indicating 
that the rows of T1 - al(zj)I are linearly dependent. The details of the calculation 
are so regular that there is little reason to believe that the result is not general. 

By setting i = 0 in (5), it is seen that A(zj) = a1(zj), and hence, the A(zj), 
j = 1, 2, ... ,N, are the eigenvalues of T1. Since the determinant of a matrix is the 
product of its eigenvalues, it follows that 

(37) detT1 = A(z1)A(Z2) ... A(ZN), 

and hence, T1 is singular if and only if A ( * ) and Q( * ) share a zero. 
Example 1. This problem was suggested by Henrici [1, p. 556]. 

A(s) = 3S3 - 2S2 + 5s + 1, 

B(s) = 4sS - 2s4 + 2s3 _ 52 - 8s - 9, 

Q(s)= (s-1), K= 3, 
N=1, M=3, m=5, u=4. 

By the standard version of Horner's scheme we compute 

al= 7, (21 =10, a31 = 7, a41 = 3, and 

pl = -14, /21 = 8, P31 = 33, P41 = 34, P51 = 18, P61 = 4. 

From (25) and (31) we obtain 

7 ? ? ~Cll - 14 
10 7 ? C21 = 8 
7 10 7 C31 33 

from which we getc1 = -2, c21 = 4, c3l = 1. 

From (26) 

L [34 ] 
3 7 10 

[2] LE21 -18110 3 71 4~ 
E31 4- 41 0 0 3 1i 
E41 L oL 0 0 L 

from which we find Ell = 2, 21 = 1, E31 =1, E41 =0. 

From (2) and (12) the decomposition becomes 

-2 4 1 (s- 1)2-(s 1) +2 

(s-1)+ (3 1)2 (s -1) 3S3 - 2S2 + 5s + 1 
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Example 2. This problem was also taken from Henrici [1, p. 560]. 

A(s) = 3s3 - 2s2 + 5s + 1, 

B(s) = 7s4 - 8s3 + 12s2 - s + 7, 

Q(S) = s2 + 2s + 2, K= 1, 

N=2, M=3, m=4, u=2. 
The extended version of Horner's scheme yields 

all = 17, a12= 15; a21 = -8, (22= 3, and 

91, = -77, /12 = -41; /21 = 28, f22 = -36; 331 = 7. 
From (25) and (32) 

17 - 301 cll -77 

15f -13] [C12 -44 

which yields c1 = - 1, c12 = 2. Then (26) gives 
[" ?1 _ [ 28 -8 9 

E12 = -36 _ 3 -14 ri] 
E21 7J 0 3 [2] 

LE22 I L 01 0 01 
from which Ei = 2, c12 = -5, E21 = 1, E22 = 0. The decomposition is 

2s - 1 (1)(s2?+ 2s + 2) +(-5s + 2) 

s2 + 2s + 2 33-2s2 + 5s + 1 
Operations Count. The sum of the number of multiplications and divisions 

required to implement (25) and (26) may be estimated. A number of assumptions are 
made. Among them are that u = (M + 1)/N, and v = (m + 1)/N. The enumera- 
tion computation is so complicated that only the final results are reported. The 
operations count for (25) is 

N3[ul+ N2[Ku?? -v - -+~ +N 
[ 6 ] [ 2 2 +v 2 -2- ]+N[ 2 +2 -- - 

The values of ii and v to be used are found in Figure 2. 

1 < v < K K < v < K + u 

I < u < K tu-u -=u 

K < u < ?? o K u=K 

FIGURE 2 

Proper values of u and 6. 

The number of additional operations required for (26) is 

2 [U2+ u+(v-V)2+ V-_V +N[iU-u]. 

Henrici [2] gives the operations count for his Method C. In terms of the present 
notation that count is 

3MN + 3N3 + 0(N2). 
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The conditions under which this count was made correspond to those of the last row 
and last column of the table in Figure 2. The operations count for the method in this 
paper under those conditions is 

M[M + 2N + 1] + 3N3 + O(N2), 

which is comparable to Henrici's result. 
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